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This supplementary material contains three sections:

• Section A presents full derivations to formulate
the representation update rules of predictive coding
module (PCM).

• Section B introduces more details about our imple-
mentation.

• Section C gives additional ablation results.

We also provide a video demo of sound localization in
the supplement.

A FULL FORMULATION OF PCM
The PCM, proposed for audio and visual feature alignment,
plays an important role in improving sound localization
performance of SSPL. As shown in Fig. S1, the key idea
underlying PCM consists of three parts: (1) a feedback pro-
cess (solid line) updates representations with the top-down
predictions that originate from the visual feature; (2) a feed-
forward process (dashed line) also updates representations
but with the bottom-up prediction errors that evolve from
the audio feature; (3) a recursive modulation mechanism
works to conduct the two processes alternatively. In the
following, we first formulate the optimization objective of
PCM, and then derive the representation update rules of the
two processes, respectively, which are followed by a brief
summary. Note that for applications of PCM, we only need to
explicitly update representations according to the rules given in
Eqs. (S10)-(S13), without performing derivations again.

Denote by fa the audio feature, by fv the visual feature,
by rl(t), l ∈ {1, . . . , L}, t ∈ {0, . . . , T} the representation of
the l-th layer of PCM network at time step t, and by Wl,l−1
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Fig. S1. Overview of predictive coding module (PCM). For simplicity we
only show a 3-layer version.

the feedback connection weights from layer l to layer l − 1
(and vice versa for Wl−1,l).

Optimization Objective. At layer l, PCM minimizes the
following compound loss:

Ll
PCM =

αl

2
||rl−1 − G((Wl,l−1)

T rl)||22︸ ︷︷ ︸
Ll

1

+
βl

2
||rl − pl||22︸ ︷︷ ︸

Ll
2

,

(S1)
where the function G corresponds to a generative process,
αl and βl are scalars that control the weights of the two
loss terms Ll

1 and Ll
2, and pl = G((Wl+1,l)

T rl+1) is the
prediction of rl.

Given the lower-level representation rl−1 and the top-
down prediction pl, our goal is to estimate rl so as to
decrease the loss in Eq. (S1). Minimizing Ll

1 w.r.t. rl leads to
the representation that can be used to predict the lower level
of representation rl−1, while minimizing Ll

2 w.r.t. rl yields
the representation that approximates the prediction signal pl
coming from a higher level. Therefore, the representation rl
associates lower- and higher-level information by reducing
two prediction errors in Ll

1 and Ll
2. Minimizing losses at all

layers can implicitly drive predictions at different levels to
be mutually consistent [1].

Feedback Process. This process acts to update represen-
tations based on predictions from higher levels. Following
[2], [3], we set G(x) = x, and then employ gradient descent
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to minimize Ll
2 w.r.t. rl, resulting in update rules:

pl(t) = (Wl+1,l)
T rl+1(t), (S2)

∂Ll
2

∂rl(t)
= 2(rl(t)− pl(t)), (S3)

rl(t+ 1) = rl(t)− ηl
βl

2

∂Ll
2

∂rl(t)

= (1− ηlβl)rl(t) + ηlβlpl(t), (S4)

where ηl is a non-negative scalar governing learning. For
simplicity, let bl = ηlβl, and then Eq. (S4) is rewritten as
follows:

rl(t+ 1) = (1− bl)rl(t) + blpl(t). (S5)

PCM carries out the feedback updating from top layer L to
bottom layer 1, where the prediction of rL(t) at top layer is
set as the visual feature, i.e., pL(t) ≡ fv .

Feedforward Process. This process works to update
representations by using prediction errors from lower levels.
For layer l, the lower-level prediction error el−1 is the
difference between rl−1 and pl−1. We use gradient decent
to minimize Ll

1 w.r.t. rl, leading to the following update
rules:

el−1(t) = rl−1(t)− pl−1(t), (S6)

∂Ll
1

∂rl(t)
= −2Wl,l−1el−1(t), (S7)

rl(t+ 1) = rl(t)− κl
αl

2

∂Ll
1

∂rl(t)

= rl(t) + κlαlWl,l−1el−1(t), (S8)

where κl is a non-negative scalar like ηl. We also set
al = κlαl for simplicity. Similar to [2], we replace the
feedback connection weights Wl,l−1 in Eq. (S8) with the
transposed feedforward connection weights (Wl−1,l)

T , and
thus can endow PCM with more degrees of freedom to
learn. Consequently the update rule in Eq. (S8) can be
rewritten as a feedforward operation:

rl(t+ 1) = rl(t) + al(Wl−1,l)
T el−1(t). (S9)

In this process, PCM updates representations from bottom
layer 1 to top layer L, where we let r0(t) ≡ fa and p0(t) =
(W1,0)

T r1(t).
Summary. So far we formulate PCM with the simple

linear activation functions. To introduce non-linearity into
PCM, a nonlinear activation function ϕ (e.g., ReLU [4] used
in [2] or GELU [5] used in this work) is applied to the above
update Eqs. (S5) and (S9). By taking the recursive computing
into account, we summarize the two processes as follows.
Nonlinear feedback process (l = L,L− 1, . . . , 1):

pl(t) = (Wl+1,l)
T rl+1(t), (S10)

rl(t)← ϕ((1− bl)rl(t− 1) + blpl(t)). (S11)

Nonlinear feedforward process (l = 1, 2, . . . , L):

el−1(t) = rl−1(t)− pl−1(t), (S12)

rl(t)← ϕ(rl(t) + al(Wl−1,l)
T el−1(t)). (S13)

The two processes are conducted alternatively such that
all representations in PCM are refined progressively. Finally,
we transform the top layer representation at last time step,

TABLE S1
Learning Rate Settings in SSPL

Training set SSPL (w/o PCM) SSPL (w/ PCM)

lr1 lr2 lr1 lr2

Flickr10k 2 · 10−3 5 · 10−4 5 · 10−5 2 · 10−5

VGG-Sound10k 1 · 10−2 5 · 10−3 5 · 10−5 2 · 10−5

Flickr144k 5 · 10−3 1 · 10−3 5 · 10−5 2 · 10−5

VGG-Sound144k 5 · 10−3 1 · 10−3 1 · 10−5 1 · 10−5

lr1 denotes the learning rate for projection and prediction MLPs, and lr2 for
remaining model parts.

TABLE S2
Learning Rate Settings in SACL

Training set Visual network Audio network

Flickr10k 2 · 10−4 2 · 10−4

VGG-Sound10k 2 · 10−4 2 · 10−4

Flickr144k 1 · 10−4 1 · 10−4

VGG-Sound144k 1 · 10−4 1 · 10−4

rL(T ), to a new visual feature, f̃v , with dimension the same
as fv by a 1× 1 convolution. The representation learning of
SSPL can proceed based on this f̃v , instead of fv as used in
the vanilla SSPL.

B IMPLEMENTATION DETAILS

B.1 Architecture of PCM

For the feedback process of PCM, we use convolution layers
(kernel_size = 3, stride = 1, padding = 1) followed
by max pooling operation to reduce the spatial dimension-
ality of feature maps, while using 1 × 1 convolutions to
decrease the number of channels. As for the feedforward
process, the transposed convolutions (a.k.a. deconvolutions)
are utilized and feature maps are upsampled by the “bilin-
ear” upsampling algorithm, provided in PyTorch. Besides,
the number of convolution layers is L = 3. From top layer L
to bottom layer 1, the number of filters within each layer is
512, 512, and 128, respectively. The transposed convolution
layers have the same setting. Moreover, we use GELU [5]
as the nonlinear activation function for both processes. To
stabilize and accelerate training, we adopt the batch nor-
malization [6] before every non-linearity at each layer and
at each time step, except the prediction of audio feature at
bottom layer.

B.2 Training Details

The AdamW [7] optimizer is employed to train our model,
where we set (β1, β2) = (0.9, 0.999) and set weight decay
to 10−4. In practice, we find that learning rates have vital
influence on SSPL’s performance, hence we give detailed
learning rate settings in Table S1. As for SACL, both visual
and audio feature extractors keep the same learning rate, as
shown in Table S2. During training, there are 256 image-
audio pairs in each mini-batch, which are distributed in
parallel on 2 or 4 NVIDIA GeForce GTX 1080 Ti GPUs.
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TABLE S3
Parameters Used to Augment Images

Augmentation Parameter

Crop

p = 1
output size of Resize = int(224× 1.1)
interpolation method of Resize = BICUBIC
crop size = 224

Horizontal flip p = 0.5

Vertical flip p = 0.5

Translation p = 1.0
maximum absolute fraction = (0.2, 0.2)

Rotation p = 1.0
angle ∈ {0, 90, 180, 270}

Grayscale p = 0.2

Color jittering

p = 0.8
maximum brightness adjustment = 0.4
maximum contrast adjustment = 0.4
maximum saturation adjustment = 0.4
maximum hue adjustment = 0.1

Gaussian blur p = 0.5
σ ∈ [0.1, 2.0)

p denotes the probability that the corresponding operation will be per-
formed.

TABLE S4
Ablation on Image Augmentations of SSPL

Augmentation SoundNet-Flickr VGG-SS

cIoU ↑ AUC ↑ cIoU ↑ AUC ↑

Crop (baseline) 0.514 0.499 0.233 0.324

+ Horizontal flip 0.671 0.556 0.253 0.335
+ Vertical flip 0.667 0.551 0.213 0.317
+ Translation 0.643 0.541 0.216 0.313
+ Rotation 0.639 0.543 0.227 0.331
+ Grayscale 0.610 0.535 0.226 0.318
+ Color jittering 0.679 0.560 0.232 0.328
+ Gaussian blur 0.619 0.533 0.204 0.299

For simplicity, we assess all cases based on SSPL (w/o PCM). All models
are trained with 10k image-audio pairs and tested on the corresponding
benchmarks. Bold indicates the best and underline the runner-up.

B.3 Image Augmentations
As shown in Table S3, a total of 8 image augmentations are
considered in our SSPL. We follow HardWay [8] to select
and set the first two augmentations: cropping with 224×224
resizing and horizontal flip. Then, we verify the effective-
ness of other three spatial augmentations that are widely
used in self-supervised visual representation learning [9],
[10], i.e., vertical flip, translation, and rotation. Additionally,
since our work draws inspiration from SimSiam [11], we
also take into account its augmentation strategies: grayscale,
color jittering, and Gaussian blur, while keeping their set-
tings the same as SimSiam. Our SACL augments images in
the way like SimSiam.

C ADDITIONAL ABLATIONS

C.1 Image Augmentation for Training SSPL
We investigate the influence of various image augmen-
tations on SSPL’s localization performance. As shown in

TABLE S5
Ablation on Feature Fusion Methods

Fusion method Cat ⊗ ⊕ AM (ours)

cIoU ↑ 0.285 0.538 0.647 0.671
AUC ↑ 0.414 0.512 0.540 0.556

We use different fusion methods in SSPL (w/o PCM), and train models on
SoundNet-Flickr10k while evaluating on the standard benchmark.

TABLE S6
Influence of Recursive Cycles T in PCM

T 1 3 5 6 7 8

cIoU ↑ 0.655 0.719 0.743 0.743 0.759 0.747
AUC ↑ 0.562 0.584 0.587 0.595 0.595 0.590

GFLOPs ↓ 38.3 43.0 47.6 49.9 52.2 54.5

All models are trained on SoundNet-Flickr10k and evaluated on the standard
benchmark.

Table S4, with the random crop baseline, our method can
already achieve reasonable performance, indicating that
object scales really matter in SSPL. However, except for
horizontal flip (over 30% and 8% improvements on two
datasets, respectively), randomly combining other augmen-
tations with crop cannot obtain consistent gains. This is
because compared with other combinations, the spatial
augmentations (random crop + horizontal flip) are more
suitable for the pre-trained and frozen VGG [12] to extract
semantic visual features. Since our work is inspired by
SimSiam [11], we also adopt its data augmentation strategies
in SSPL, but find no benefits in this setting. Therefore, in all
experiments of SSPL we take the spatial augmentations by
default.

C.2 Ablation on Feature Fusion Methods
In SSPL, visual and audio features are fused by the attention
mechanism to compute audio-visual representation. Here
we compare other three feature fusion methods, i.e., con-
catenation (Cat), multiplication (⊗), and addition (⊕), with
our attention module (AM). We can see from Table S5 that
our AM outperforms others by a large margin. This verifies
efficacy of the attention-based feature interaction.

C.3 Balance between Performance and Complexity of
PCM
In Table S6, we quantitatively compare performance and
time complexity of SSPL with varying recursive cycles T .
We find that more recursive cycles cannot always bring
gains as performance tends to be saturated when T > 5.
Additionally, compared with SSPL (w/o PCM) that occupies
35.9 GFLOPs, SSPL (w/ PCM) conducts more operations
with increasing T . As shown in Table S6, PCM takes, on
average, 2.3 GFLOPs to complete one iteration. To balance
between performance and time complexity, we set T = 5
during training.
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